Algorithms Design And Analysis MCQS with Answers
Algorithms Design And Analysis MCQS with Answers is mainly intended fro GATE aspirants.These questions can also came in Btech Computer science university exams and various interview for computer science students
(16) T (n) = T (n/2) + 1 then T (n) =
(A) O (log n) (B) O (2 log n) (C) O (n log n) (D) O (n2)
(17) T (n) = T (n/2) + n2 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(18) T (n) = 4T (n/2) + n2 then T (n) =
(A) ϴ (n log n) (B) ϴ (n3 log n) (C) ϴ (n2 log n) (D) ϴ (n4 log n)
(19) T (n) = 7T (n/2) + n2 then T (n) =
(A) ϴ (n2.5) (B) ϴ (n2.807) (C) ϴ (n2.85) (D) ϴ (n2.75)
(20) T (n) = 2T (n/2) + n3 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(21) T (n) = T (9n/10) + n then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(22) T (n) = 16T (n/4) + n2 then T (n) =
(A) ϴ (n log n) (B) ϴ (n3 log n) (C) ϴ (n2 log n) (D) ϴ (n4 log n)
(23) T (n) = 7T (n/3) + n2 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(24) T (n) = 7T (n/2) + n2 then T (n) =
(A) ϴ (nlog7) (B) ϴ (nlog5) (C) ϴ (nlog9) (D) ϴ (nlog3)
(25) T (n) = 2T (n/2) + n3 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(26) T (n) = 2T (n/4) + √n then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (n2 log n) (D) ϴ (n3 log n)
(27) T (n) = T (√n) +1 then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (log n) (D) ϴ (n2 log n)
(28) T (n) = 100T (n/99) + log (n!) then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (n2 log n) (D) ϴ (n3 log n)
(29) T (n) = T (n-1) + n4 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(30) T (n) = 2T (n/2) + 3n2 and T (1) = 11 then T (n) =
(A) O (n3) (B) O (n2) (C) O (n) (D) O (n4)
(A) O (log n) (B) O (2 log n) (C) O (n log n) (D) O (n2)
(17) T (n) = T (n/2) + n2 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(18) T (n) = 4T (n/2) + n2 then T (n) =
(A) ϴ (n log n) (B) ϴ (n3 log n) (C) ϴ (n2 log n) (D) ϴ (n4 log n)
(19) T (n) = 7T (n/2) + n2 then T (n) =
(A) ϴ (n2.5) (B) ϴ (n2.807) (C) ϴ (n2.85) (D) ϴ (n2.75)
(20) T (n) = 2T (n/2) + n3 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(21) T (n) = T (9n/10) + n then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(22) T (n) = 16T (n/4) + n2 then T (n) =
(A) ϴ (n log n) (B) ϴ (n3 log n) (C) ϴ (n2 log n) (D) ϴ (n4 log n)
(23) T (n) = 7T (n/3) + n2 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(24) T (n) = 7T (n/2) + n2 then T (n) =
(A) ϴ (nlog7) (B) ϴ (nlog5) (C) ϴ (nlog9) (D) ϴ (nlog3)
(25) T (n) = 2T (n/2) + n3 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(26) T (n) = 2T (n/4) + √n then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (n2 log n) (D) ϴ (n3 log n)
(27) T (n) = T (√n) +1 then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (log n) (D) ϴ (n2 log n)
(28) T (n) = 100T (n/99) + log (n!) then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (n2 log n) (D) ϴ (n3 log n)
(29) T (n) = T (n-1) + n4 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(30) T (n) = 2T (n/2) + 3n2 and T (1) = 11 then T (n) =
(A) O (n3) (B) O (n2) (C) O (n) (D) O (n4)
Algorithms Design And Analysis MCQS with Answers
| 16 | A |
| 17 | C |
| 18 | C |
| 19 | B |
| 20 | B |
| 21 | D |
| 22 | C |
| 23 | C |
| 24 | A |
| 25 | B |
| 26 | B |
| 27 | C |
| 28 | A |
| 29 | A |
| 30 | B |