Algorithms Design And Analysis MCQS with Answers
Algorithms Design And Analysis MCQS with Answers is mainly intended fro GATE aspirants.These questions can also came in Btech Computer science university exams and various interview for computer science students
(16) T (n) = T (n/2) + 1 then T (n) =
(A) O (log n) (B) O (2 log n) (C) O (n log n) (D) O (n2)
(17) T (n) = T (n/2) + n2 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(18) T (n) = 4T (n/2) + n2 then T (n) =
(A) ϴ (n log n) (B) ϴ (n3 log n) (C) ϴ (n2 log n) (D) ϴ (n4 log n)
(19) T (n) = 7T (n/2) + n2 then T (n) =
(A) ϴ (n2.5) (B) ϴ (n2.807) (C) ϴ (n2.85) (D) ϴ (n2.75)
(20) T (n) = 2T (n/2) + n3 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(21) T (n) = T (9n/10) + n then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(22) T (n) = 16T (n/4) + n2 then T (n) =
(A) ϴ (n log n) (B) ϴ (n3 log n) (C) ϴ (n2 log n) (D) ϴ (n4 log n)
(23) T (n) = 7T (n/3) + n2 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(24) T (n) = 7T (n/2) + n2 then T (n) =
(A) ϴ (nlog7) (B) ϴ (nlog5) (C) ϴ (nlog9) (D) ϴ (nlog3)
(25) T (n) = 2T (n/2) + n3 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(26) T (n) = 2T (n/4) + √n then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (n2 log n) (D) ϴ (n3 log n)
(27) T (n) = T (√n) +1 then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (log n) (D) ϴ (n2 log n)
(28) T (n) = 100T (n/99) + log (n!) then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (n2 log n) (D) ϴ (n3 log n)
(29) T (n) = T (n-1) + n4 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(30) T (n) = 2T (n/2) + 3n2 and T (1) = 11 then T (n) =
(A) O (n3) (B) O (n2) (C) O (n) (D) O (n4)
(A) O (log n) (B) O (2 log n) (C) O (n log n) (D) O (n2)
(17) T (n) = T (n/2) + n2 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(18) T (n) = 4T (n/2) + n2 then T (n) =
(A) ϴ (n log n) (B) ϴ (n3 log n) (C) ϴ (n2 log n) (D) ϴ (n4 log n)
(19) T (n) = 7T (n/2) + n2 then T (n) =
(A) ϴ (n2.5) (B) ϴ (n2.807) (C) ϴ (n2.85) (D) ϴ (n2.75)
(20) T (n) = 2T (n/2) + n3 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(21) T (n) = T (9n/10) + n then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(22) T (n) = 16T (n/4) + n2 then T (n) =
(A) ϴ (n log n) (B) ϴ (n3 log n) (C) ϴ (n2 log n) (D) ϴ (n4 log n)
(23) T (n) = 7T (n/3) + n2 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(24) T (n) = 7T (n/2) + n2 then T (n) =
(A) ϴ (nlog7) (B) ϴ (nlog5) (C) ϴ (nlog9) (D) ϴ (nlog3)
(25) T (n) = 2T (n/2) + n3 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(26) T (n) = 2T (n/4) + √n then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (n2 log n) (D) ϴ (n3 log n)
(27) T (n) = T (√n) +1 then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (log n) (D) ϴ (n2 log n)
(28) T (n) = 100T (n/99) + log (n!) then T (n) =
(A) ϴ (n log n) (B) ϴ (√n log n) (C) ϴ (n2 log n) (D) ϴ (n3 log n)
(29) T (n) = T (n-1) + n4 then T (n) =
(A) ϴ (n4) (B) ϴ (n3) (C) ϴ (n2) (D) ϴ (n)
(30) T (n) = 2T (n/2) + 3n2 and T (1) = 11 then T (n) =
(A) O (n3) (B) O (n2) (C) O (n) (D) O (n4)
Algorithms Design And Analysis MCQS with Answers
16 | A |
17 | C |
18 | C |
19 | B |
20 | B |
21 | D |
22 | C |
23 | C |
24 | A |
25 | B |
26 | B |
27 | C |
28 | A |
29 | A |
30 | B |